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[1] We propose a new physical interpretation of the diffusion process for the piezometric
head h(x, t) in heterogeneous aquifers based on the continuous time random walk (CTRW)
theory. For the typical heterogeneities considered in this work, we find that a CTRW
based diffusion equation for h(x, t) provides better fits to the transient flow simulations
than the classical diffusion equation (DE). The DE is found to be a special case of the
CTRW diffusion equation. The results of this work have clear implications for the
interpretation of pumping tests and what information can be extracted from them.
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[2] Well testing is an essential tool for groundwater
aquifer assessment, the key idea being that hydraulic
properties can be derived by means of transient drawdown
and/or flux measurements. The commonly accepted math-
ematical model for groundwater flow in porous formations
is based on the well known Darcy law, which relates the
fluid flow to the gradient of the piezometric head, h(x, t) [L].
Together with a mass balance and the assumptions of small
compressibility, constant porosity and permeability, and
small head gradients, it is possible to derive a partial
differential equation of parabolic type (diffusion equation)
for h

@th x; tð Þ ¼ r a xð Þrh x; tð Þð Þ; ð1Þ

where a = K/S is the hydraulic diffusivity [L2/T ], S is the
specific storage [1/L], and K is the hydraulic conductivity
[L/T ]. We note that the characteristic time t for the
diffusion of h is determined solely by the value of a. Simple
analytical solutions for (1) exist for different boundary
conditions (BCs), such as leaky aquifers, well skin effects,
and wellbore storage. Almost all these solutions are based
on the simplifying assumption of homogeneity, i.e, a is
treated as a constant characteristic of the particular
geological formation. Current hydrogeological practice
relies heavily on the Jacob, Theis and Hantush methods
which are all derived from the analytical solutions of (1).
Comprehensive reviews of these methods can be found in
any standard textbook on the interpretation of pumping tests
[e.g., Streltsova, 1988].
[3] Often, however, pumping tests show significant devi-

ations from these classical textbook solutions [Raghavan,
2004]. Some of these deviations can be attributed to an

imperfect knowledge of the BCs for the flow, while others
are related to the unknown heterogeneity of the aquifer.
[4] In this work we shall focus exclusively on the effects

of the heterogeneities. Heterogeneity-related deviations
from the classical solutions of (1) can be more or less
pronounced depending on the conductivity contrast between
adjacent regions and on their degree of connectedness [e.g.,
Knudby and Carrera, 2005]. This leads to the problem of
defining appropriate scale-up procedures to derive macro-
scopic flow and transport coefficients from the knowledge
of the underlying heterogeneity. Early works by Dagan
[1982], Naff [1991], and Indelman [1996] recognized and
analyzed the importance of heterogeneities for the transient
flow problem. In the following, we will refer to as ‘‘anom-
alous’’ the deviations of the effective drawdowns/fluxes
with respect to the classical solution for a homogeneous
field (Gaussian regime).
[5] An effective way of accounting for the effect of

heterogeneity in transport problems is the continuous time
random walk (CTRW) method. In hydrogeological applica-
tions, CTRW has proved to be highly successful for the
treatment of the impact of heterogeneities on transport of
contaminants in porous and fractured systems, both at the
laboratory and field scale [Berkowitz and Scher, 1995,
1997; Cortis et al., 2004a]. The objective of this study is
to extend the physical picture of the CTRW theory to
investigate the problem of transient flow in heterogeneous
aquifers.
[6] Our point of departure is the master equation (ME)

(see, e.g., Oppenheim et al. [1997, chapter 3] and Berkowitz
et al. [2006] for a more hydrogeologically oriented exposi-
tion). The ME is a phenomenological first-order differential
equation describing the time evolution (Markov process) of
the probability of a system to occupy each of a (discrete or
continuous) set of states. The discrete form of the ME for
h(x, t) reads

@thi tð Þ ¼ wijhj tð Þ; ð2Þ

where hi(t) � h(xi, t) and wij is the transition rate [1/T] of h
from point xj to xi. Einstein’s summation convention on

1Earth Sciences Division, Lawrence Berkeley National Laboratory,
Berkeley, California, USA.

2Schlumberger-Doll Research, Cambridge, Massachusetts, USA.

Copyright 2006 by the American Geophysical Union.
0043-1397/06/2006WR005227$09.00

W10201

WATER RESOURCES RESEARCH, VOL. 42, W10201, doi:10.1029/2006WR005227, 2006
Click
Here

for

Full
Article

1 of 5

http://dx.doi.org/10.1029/2006WR005227


repeated indices is assumed. Equation (2) has been utilized
widely in the physics and chemistry literature [e.g., Klafter
and Silbey, 1980]. The ME (2) represents here the balance
equation for the fluid total energy density. Note that (2) does
not assume a ‘‘Darcy-like’’ flux behavior for the evolution
of h(x, t).
[7] To better appreciate the physical meaning of the

transition rates wij, we derive their precise expression for
the simple case of diffusion of h in a completely homoge-
neous medium. Consider the discretized form of (1)

@thi tð Þ ¼ DikakDkj

� �
hj tð Þ; ð3Þ

where the spatial gradient has been approximated by the
linear operator (matrix) @x ’ Dij. Identification of the right-
hand side of (3) and (2) yields the expression for the
transition rates

w
xð Þ
ij ¼ DikakDkj: ð4Þ

Equation (4) states that the transition rates of the ME for a
completely homogeneous system are determined by a
spatial component depending on the precise position of
the sites and, importantly, by a single characteristic time, t,
given by the diffusivity coefficient a � Ls

2/t, where Ls �
Lx. Lx is the characteristic length scale at which the variation
of the diffusivity is supposed to be known. Having shown
that the ME (2) is just another way of expressing the
transient evolution of the piezometric head, h, we can
assume (2) as the starting point for our generalization.
[8] For heterogeneous media, the range of characteristic

times is wider and depends on the spatial distribution of
a(x). The determination of w(x)

ij requires detailed knowledge
of the system at length scales Lx, i.e., the characterization
of the heterogeneities on all length scales that influence
the calculation of the flow field. Below this characteristic
length scale we must resort to a statistical description
of a(s) and hence to a probability distribution of w(s)

ij at
Ls � Lx.
[9] To implement this probabilistic approach we consider

the ensemble average of (2) [Klafter and Silbey, 1980]. We
first rewrite (2) in Laplace space

u~hi uð Þ 	 h0i ¼ w
sð Þ
ij
~hj uð Þ; ð5Þ

where the tilde indicates the Laplace transform ~hi (u) �
L[hi(t)] �

R
0
1hi (t) exp(	ut)dt, and u is the Laplace variable.

The ensemble average, [[]], of the ME can be written as
[Klafter and Silbey, 1980]

u ~hi uð Þ
� �� �

	 h0 ¼ ~Wij uð Þ ~hj uð Þ
� �� �

; ð6Þ

and is referred to as the ‘‘generalized master equation’’
(GME). The ensemble average of the small-scale transition
rates not only depends on space, but also on time (i.e., the
generalized transition rates ~Wij depend on u). We will
assume that the spatial and temporal components of ~Wij(u)
can be decoupled in the form

~Wij uð Þ � ~M uð Þw xð Þ
ij ; ð7Þ

i.e., we assume that all the information on the unknown
characteristic times for the diffusion at the scale Ls is lumped
into a memory function M(u), whereas the spatial influence
of the heterogeneities is mapped onto time-independent
transition rates w(x) at the scale Lx. The ensemble average
operator introduces a memory effect in the structure of the
PDE and thus explicit flow calculations on multiple
realizations of the diffusivity field are not required.
[10] Inserting (7) and (4) into (6) and going to the

continuum limit we obtain

S u ~hi uð Þ
� �� �

	 h0i
� �

¼ 	@x~q x; uð Þ; ð8Þ

where the generalized flux ~q(x, u) is written as

~q x; uð Þ ¼ 	 ~M uð ÞK xð Þ@x ~hj uð Þ
� �� �

: ð9Þ

Equation (8) represents the evolution of the mean piezo-
metric head; the evolution of the variance of [[~hi(u)]] is a
subject of current investigation. The measured piezometric
head is thus the result of an average over all the possible
(unknown) small-scale heterogeneities. In what follows, we
will drop the cumbersome ensemble average [[]] notation
for the piezometric head. Equation (8) contains a large-scale
variation for K(x) and in this respect is similar to the hybrid
model for transport proposed by Cortis et al. [2004a].
[11] Klafter and Silbey [1980] proved that the GME is

equivalent to a CTRW equation. We can therefore exploit
the results valid for CTRW and write the memory function
~M (u) as [Dentz et al., 2004]

~M uð Þ � �tu
~y uð Þ

1	 ~y uð Þ
; ð10Þ

where y(t) is the classical CTRW transition time distribu-
tion for the transfer of h, and is a characteristic time. The
physical interpretation of y(t) in the context of flow is
straightforward: it represents the probability rate that the
total fluid energy density (the piezometric head, h) is
transferred to a neighboring location. In other words, one
should not think of actual ‘‘jumps’’ of discrete quantities as
for instance in the case of the electron hopping transport
problem, but rather in terms of rates of continuous
quantities. In this respect, the discrete forms of the ME
and GME are only convenient tools to derive the continuous
partial differential equation (8). The explicit relationship
between w(s)

ij and y(t) is given by Berkowitz et al. [2006,
Appendix B].
[12] Various forms of y(t) have been proposed in the

literature to conveniently describe the effect on transport of
heterogeneities typically encountered in geological materi-
als [Cortis et al., 2004b]. In this work, we will focus on
three expressions for y(t), namely, the decaying exponential

y tð Þ ¼ exp 	tð Þ; ð11Þ

the truncated power law (TPL)

y tð Þ ¼ 1

t1 t
	b
2 exp t	1

2

� �
G 	b; t	1

2

� �� � exp 	t=t2ð Þ
1þ t=t1ð Þ1þb ; ð12Þ
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and the modified exponential (ETA)

y tð Þ ¼ h3F3
1;1;1

2;2;2
;	t

� 	
e
	ht4F4

1;1;1;1

2;2;2;2
;	t

� 	
: ð13Þ

A thorough discussion on these three probability transition
rates are given by Berkowitz et al. [2006]. It will be
sufficient here to recall that L[exp(– t)] = 1/(1 + u), and thus
~M (u) = 1, i.e., the classical DE (1) reduces to a special case
of the CTRWequation (8). The other two forms for y(t) lead
to ‘‘anomalous’’ diffusive transport. The generalized flux,
~q(x, u), reduces to the classical Darcy law for homogeneous
media (i.e., when ~M (u) = 1), or for asymptotic steady state
conditions, i.e., when ~M (u) ! 1 as is the case for the
expressions in (12) and (13). The solution of (8) is obtained
analogously to what described by Cortis and Berkowitz
[2005].
[13] The space-time nonlocal nature of (unconditional)

mean transient flow has been previously recognized by
others, most notably in the works of Hu and Cushman
[1994] and Indelman [1996]. These authors used perturba-
tion analysis to formulate an effective Darcy law and derive
a mean flux term that is nonlocal, forming a convolution
integral in space-time of a kernel with the mean head
gradient [Tartakovsky and Neumann, 1998; Ye et al.,
2004]. Our analysis is fundamentally different from the
aforementioned works.
[14] Our numerical results clearly indicate that the effect

of the heterogeneities considered here can be lumped into
a nonlocal-in-time memory term; the localization in space
of the ensemble averaged transition rates is thus fully
justified.
[15] Consider the question, Given a heterogeneous spatial

distribution of a(s), is it possible to define an ‘‘equivalent’’
macroscopic diffusivity �a at the scale Lx for the whole
domain? To answer this question, we adopt a computational
point of view, i.e., we assume that we know a priori the
structure of the heterogeneity field. We then simulate a
transient flow situation by means of a standard flow
simulator. Finally we fit the time evolution of some average
quantity by means of (8) with constant �a. Here we consider
two-dimensional parameter distributions to illustrate in a
simple way the effect of heterogeneity on the diffusion of
hydraulic head.
[16] Drawdown measurements can, in theory, always be

translated into flux. We therefore present our results in terms
of integrated flux without loss of generality. The main
results of our development do not depend on the particular
choice of BCs and more realistic 3D scenarios can be
implemented in a straightforward manner to also include
pumping or injection wells as sources or sinks in (8).
[17] Two typical examples of the 2-D conductivity dis-

tributions used in this study are shown in Figure 1. The
distributions of Y = ln(K) are multi-Gaussian with a variance
of s2Y = 15.9, and a geometric mean hYiG = 0. The employed
variograms are Gaussian with an isotropic range of 64 grid
cells. The domains cover 128 � 128 grid cells. In Figure 1
the axes lengths have been normalized, Lx = 1. The
distributions were generated using SGSIM [Deutsch and
Journel, 1997]. S is assumed constant and equal to 1. The
distributions of diffusivity and conductivity are therefore

identical. The arithmetic, geometric, and harmonic mean are
the same for both domains and equal to haiA= 1782, haiG = 1
and haiH = 0.56 � 10	3, respectively.
[18] The average flow is assumed to be horizontal in the

(x1, x2) plane. The initial condition is h(x1, x2, 0) = 1. We
impose a no-flow BC on the top, @x2 h(x1, 0, t) = 0 and
bottom, @x2 h(x1, 1, t) = 0, boundaries. A Dirichlet BC is
imposed on the left, h(0, x2, t) = 1, and right h(1, x2, t) =
0. The transient flow corresponding to these BCs was
simulated by means of MODFLOW-2000, version 1.6
[Harbaugh et al., 2000]. The streamlines for domains A
and B are reported in Figure 1. The system relaxes toward a
steady state situation corresponding to an imposed macro-
scopic unit piezometric head gradient. This yields a time-
dependent Darcy flow macroscopically directed from left to
right. The integral of the flow on the left boundary is defined
as Q(t) = 	

R 1

0
K(0, x2) @x1 h(0, x2, t) dx2. In Figure 2 we

report the normalized flux q̂(t) = Q(t)/Q(1).

Figure 1. Typical realizations of a multi-Gaussian field.
The scales on the right represent Y = ln(K). The solid lines
represent the streamlines for the flow problem.
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[19] The solution of the 1D form of (8) for the initial
condition h(0, t) = 1 and BCs h(0, t) = 1 and h(1, t) = 0 gives
an expression for the Laplace transform of the normalized
flux, ~q(x, u) equal to [e.g., Carslaw and Jaeger, 1986]

~q x; uð Þ ¼ S	1 x
u

cosh xxð Þ
sinh xð Þ ; where x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u

a ~M uð Þ

r
: ð14Þ

Equation (14) is evaluated at x = 1 and then numerically
inverted back to the time domain to get the evolution of
q(t).
[20] We calculated the best fit parameters of (14) for the

three models of y(t) in (11), (12), and (13) that minimize the
norm jjq(t)	 q̂(t)jj. Deviations from (1) (i.e., from (8) with
(11) are observed at both early and late arrival times. This
means that the heterogeneities influence how fast the
piezometric head at one location affects its neighboring
locations. For both domains, the best value for �a � 0.12.
For Domain A, the ETA function in (13) gives the best
results with h = 6.28 � 10	2 and �a = 1.99, whereas the TPL
function gives a less good fit. The situation is reversed for
Domain B, where the TPL function gives a better fit than
the ETA function. The best fit parameters are in this case
�a = 1.24, b = 0.94, t2 = 31.68, and t1 � 0. Note that the
magnitude of the truncation time t2 compares well with
the total breakthrough time tmax � 20, which indicates that
the system is converging toward an asymptotic Gaussian

regime. The fitted values of �a are much larger than the
value of �a in (1), and comparable with the geometric
mean haiG = 1. This is due to the heterogeneity which
allows the transient signal to cross the field faster than
for the corresponding homogeneous field [e.g., Knudby
and Carrera, 2006].
[21] We have tested 50 realizations with the same geo-

statistical parameters adopted for domains A and B. With a
few exceptions, we were able to fit all the realizations with
(12) or (13). The difference in fitting function between the
two realizations may be attributed to a different degree of
channeling for the different realizations. In fact, streamlines
for Domain A seem to be slightly more regularly spaced
than for Domain B, where a more distinct power law
behavior is observed. We are currently testing these hy-
potheses more in depth using a larger set of realizations.
Equation (13) was derived by Cortis et al. [2004a] under the
assumption of exponential decay of the spatial autocorrela-
tion for the Stokes velocity field. This suggests that (9) can
be upscaled from the Stokes equations, analogously to what
is done with the frequency-dependent dynamic permeability
[e.g., Lévy and Sanchez-Palencia, 1977]. The fact that (13)
is found so commonly to fit our transient flow realizations
might derive from our assumption of exponential decay for
the spatial autocorrelation of ln(K). The relationship be-
tween the various fitting parameters for (12) or (13) and the
geostatistical parameters used to generate the various real-
izations and the resulting parameter distribution character-
istics, in particular the connectivity, is also under
investigation.
[22] To conclude this communication, we briefly analyze

the relationship between our findings and the problem of the
transport of contaminants in geological formations. Intro-
ducing the expression for the Darcy’s velocity in (9) into the
classical advection equation for the (Laplace transformed)
bulk concentration ~c(x, u) we obtain

u~c x; uð Þ 	 c0 xð Þ ¼ 	 ~M uð ÞK xð Þ@x~h x; uð Þ@x~c x; uð Þ ð15Þ

which tells us that anomalous transport of tracers in
heterogeneous media can happen also without recourse to
the local dispersion effect. Clearly, the latter cannot be
neglected in any realistic situation. The complete transport
equation therefore needs to be written as

u~c x; uð Þ 	 c0 xð Þ ¼ 	 ~M uð Þ ~M 0 uð ÞK xð Þ@x~h x; uð Þ
� @x ~c x; uð Þ 	 d@x~c x; uð Þð Þ ð16Þ

where d is the local dispersivity [L] and ~M 0(u) is the memory
function for the transport problem [Berkowitz et al., 2006].
Equation (16) allows the calculation of the nonlocal-in-time
effect of the heterogeneities of the contaminant transport in a
time-dependent velocity field. The relationship between the
~M (u) and ~M 0(u) parameters is an open question, which can
be resolved only experimentally.
[23] Note that the diffusion problem treated here is

mathematically equivalent to other problems found in other
geophysical applications like heat transfer and electromag-
netism. The coupling of these geophysical problems with
the flow and transport processes is a subject of current
research.

Figure 2. Normalized flow q as a function of time t due to
a sudden drop in the piezometric head on the right
boundary. The dots (‘‘observed’’) represent the numerical
solution of (1), q̂(t), for the heterogeneous domains in
Figure 1. The solid, dashed, and dash-dotted lines represent
the best fit of q̂(t) with the classical diffusion equation, (i.e.,
(8) with (11), (8) with (12), and (8) with (13), respectively).
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